Thermal UV treatment on SU-8 polymer for integrated optics

نویسندگان

  • Xi-Bin Wang
  • Jian Sun
  • Chang-Ming Chen
  • Xiao-Qiang Sun
  • Fei Wang
  • Ming Zhang
  • S. W. Kwon
  • W. S. Yang
  • H. M. Lee
  • W. K. Kim
  • G. S. Son
  • D. H. Yoon
  • S.-D. Lee
  • V. A. L. Roy
  • M. H. W. Lam
  • C. S. Lee
  • E. Y. B. Pun
چکیده

We report a simple and low-cost method to fabricate SU-8-based polymer waveguide devices. The influence of hard-baking temperature on SU-8 polymer treated with or without UV radiation was investigated in detail. Based on these properties, the straight type, Y branch type, MarchZehnder (M-Z) type and 1 × 4 splitter waveguides were successfully fabricated. And a polymeric thermal-optic (TO) switch with M-Z type waveguide was also fabricated by this method. The device exhibits low power consumption of less than 6.4 mW, fast rise time of about 149.3 μs and fast fall time of about 139.3 μs. The experimental results showed that this method can bypass the need for complex lithography and provide high resolution and fine waveguide quality desired for TO switches as well as other planar lightwave devices. ©2014 Optical Society of America OCIS codes: (160.5335) Photosensitive materials; (260.7190) Ultraviolet; (160.4760) Optical properties; (130.5460) Polymer waveguides; (130.3120) Integrated optics devices. References and links 1. M. Wang, J. Hiltunen, C. Liedert, S. Pearce, M. Charlton, L. Hakalahti, P. Karioja, and R. Myllylä, “Highly sensitive biosensor based on UV-imprinted layered polymeric-inorganic composite waveguides,” Opt. Express 20(18), 20309–20317 (2012). 2. B. Y. Fan, F. Liu, Y. X. Li, Y. D. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett. 100(11), 111108 (2012). 3. S. W. Kwon, W. S. Yang, H. M. Lee, W. K. Kim, G. S. Son, D. H. Yoon, S.-D. Lee, and H.-Y. Lee, “The fabrication of polymer-based evanescent optical waveguide for biosensing,” Appl. Surf. Sci. 255(10), 5466–5470 (2009). 4. Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid electro-optic polymer/sol-gel waveguide directional coupler switches,” Appl. Phys. Lett. 94(21), 213513 (2009). 5. K.-L. Lei, C.-F. Chow, K.-C. Tsang, E. N. Y. Lei, V. A. L. Roy, M. H. W. Lam, C. S. Lee, E. Y. B. Pun, and J. Li, “Long aliphatic chain coated rare-earth nanocrystal as polymer-based optical waveguide amplifiers,” J. Mater. Chem. 20(35), 7526–7529 (2010). 6. A. Kocabas and A. Aydinli, “Polymeric waveguide Bragg grating filter using soft lithography,” Opt. Express 14(22), 10228–10232 (2006). 7. B. Bêche, P. Papet, D. Debarnot, E. Gaviot, J. Zyss, and F. Poncin-Epaillard, “Fluorine plasma treatment on SU8 polymer for integrated optics,” Opt. Commun. 246(1–3), 25–28 (2005). 8. X. Wang, J. Meng, X. Sun, T. Yang, J. Sun, C. Chen, C. Zheng, and D. Zhang, “Inductively coupled plasma etching to fabricate sensing window for polymer waveguide biosensor application,” Appl. Surf. Sci. 259(15), 105–109 (2012). 9. L. Jiang, K. P. Gerhardt, B. Myer, Y. Zohar, and S. Pau, “Evanescent-wave spectroscopy using an SU-8 waveguide for rapid quantitative detection of biomolecules,” J. Microelectromech. Syst. 17(6), 1495–1500 (2008). 10. B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightwave Technol. 27(18), 4091–4096 (2009). 11. X. Zhai, J. Li, S. Liu, X. Liu, D. Zhao, F. Wang, D. Zhang, G. Qin, and W. Qin, “Enhancement of 1.53 μm emission band in NaYF4:Er,Yb,Ce nanocrystals for polymer-based optical waveguide amplifiers,” Opt. Mater. Express 3(2), 270–277 (2013). 12. C. Liu, “Recent developments in polymer MEMS,” Adv. Mater. 19(22), 3783–3790 (2007). #201768 $15.00 USD Received 20 Nov 2013; revised 28 Jan 2014; accepted 4 Feb 2014; published 24 Feb 2014 (C) 2014 OSA 1 March 2014 | Vol. 4, No. 3 | DOI:10.1364/OME.4.000509 | OPTICAL MATERIALS EXPRESS 509 ww w. sp m. co m. cn 13. M. Nordström, D. A. Zauner, A. Boisen, and J. Hübner, “Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications,” J. Lightwave Technol. 25(5), 1284–1289 (2007). 14. Y. Wang, J.-H. Pai, H.-H. Lai, C. E. Sims, M. Bachman, G. P. Li, and N. L. Allbritton, “Surface graft polymerization of SU-8 for bio-MEMS application,” J. Micromech. Microeng. 17(7), 1371–1380 (2007). 15. C.-S. Huang and W.-C. Wang, “Large-core single-mode rib SU8 waveguide using solvent-assisted microcontact molding,” Appl. Opt. 47(25), 4540–4547 (2008). 16. B. Yang, Y. P. Zhu, Y. Q. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “Compact arrayed waveguide grating devices based on small SU-8 strip waveguides,” J. Lightwave Technol. 29(13), 2009–2014 (2011). 17. C. Chen, X. Sun, D. Zhang, Z. Shan, S.-Y. Shi, and D. Zhang, “Dye-doped polymeric planar waveguide devices based on a thermal UV-bleaching technique,” Opt. Laser Technol. 41(4), 495–498 (2009). 18. R. Singhal, M. N. Satyanarayan, and S. Pal, “Fabrication of monomode channel waveguides in photosensitive polymer on optical adhesive,” Opt. Eng. 50(9), 094601 (2011). 19. B. H. Ong, X. Yuan, and S. C. Tjin, “Adjustable refractive index modulation for a waveguide with SU-8 photoresist by dual-UV exposure lithography,” Appl. Opt. 45(31), 8036–8039 (2006). 20. B. H. Ong, X. C. Yuan, S. H. Tao, and S. C. Tjin, “Photothermally enabled lithography for refractive-index modulation in SU-8 photoresist,” Opt. Lett. 31(10), 1367–1369 (2006). 21. M. K. Gunde, N. Hauptman, M. Maček, and M. Kunaver, “The influence of hard-baking temperature applied for SU8 sensor layer on the sensitivity of capacitive chemical sensor,” Appl. Phys., A Mater. Sci. Process. 95(3), 673–680 (2009). 22. B. Y. Shew, C. H. Kuo, Y. C. Huang, and Y. H. Tsai, “UV-LIGA interferometer biosensor based on the SU-8 optical waveguide,” Sens. Actuators A Phys. 120(2), 383–389 (2005). 23. L. Gao, J. Sun, X. Sun, C. Kang, Y. Yan, and D. Zhang, “Low switching power 2×2 thermal-optic switch using direct ultraviolet photolithography process,” Opt. Commun. 282(20), 4091–4094 (2009). 24. A. M. Al-Hetar, A. B. Mohammad, A. S. M. Supa’at, and Z. A. Shamsan, “MMI-MZI polymer thermal-optic switch with a high refractive index contrast,” J. Lightwave Technol. 29(2), 171–178 (2011). 25. Z. Cao, Y. Yan, J. Meng, L. Jin, and D. Zhang, “Low power consumption thermal-optic switch based on DR1/PMMA,” Microw. Opt. Technol. Lett. 54(9), 2163–2165 (2012).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional SU-8 structures by reversal UV imprint

In this work, three-dimensional 3D SU-8 microand nanostructures were fabricated using a reversal UV imprint process at low temperature and low pressure. The SU-8 polymer was coated on a patterned glass mold and then transferred onto various substrates by reversal UV imprint at a typical temperature of 50 °C, pressure of 1 MPa, and UV exposure of 1 s. The lower temperature and pressure used comp...

متن کامل

Photodefinition of channel waveguide in electro-optic polymer

Polymers with optically active nonlinear chromophores have been shown to have a promising future in low cost and high speed electro–optic device applications. However, a main question of concern is the photochemical stability of the chromophores for long term application. The chromophore TCVDPA with a benzene bridge between a tricyanovinyl acceptor and an amino donor has been reported to have h...

متن کامل

All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator.

We experimentally investigated thermal nonlinear effects in a hybrid Au/SiO(2)/SU-8 plasmonic microring resonator for nonlinear switching. Large ohmic loss in the metal layer gave rise to a high rate of light-to-heat conversion in the plasmonic waveguide, causing an intensity-dependent thermo-optic shift in the microring resonance. We obtained 30 times larger resonance shift in the plasmonic mi...

متن کامل

Selective Metallization of Cured Su-8 Microstructures Using Electroless Plating Method

In this talk, we report a research work on fabrication and metallization of high aspect ratio polymer microstructures fabricated using UV lithography of SU-8 on silicon substrate. Electroless plating of metal film on both the top and sidewall surfaces of microstructures were achieved while the silicon substrate was not plated. The primary chemical mechanisms and possible applications were also ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014